Boundary Behaviour of Universal Taylor Series on Multiply Connected Domains
نویسندگان
چکیده
منابع مشابه
Boundary Behavior and Cesàro Means of Universal Taylor Series
We study boundary properties of universal Taylor series. We prove that if f is a universal Taylor series on the open unit disk, then there exists a residual subset G of the unit circle such that f is unbounded on all radii with endpoints in G. We also study the effect of summability methods on universal Taylor series. In particular, we show that a Taylor series is universal if and only if its C...
متن کاملUniversal Taylor series
© Annales de l’institut Fourier, 1996, tous droits réservés. L’accès aux archives de la revue « Annales de l’institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier...
متن کاملOn the Uniform Perfectness of the Boundary of Multiply Connected Wandering Domains
We investigate in which cases the boundary of a multiply connected wandering domain of an entire function is uniformly perfect. We give a general criterion implying that it is not uniformly perfect. This criterion applies in particular to examples of multiply connected wandering domains given by Baker. We also provide examples of infinitely connected wandering domains whose boundary is uniforml...
متن کاملSchwarz-christoffel Mapping of Multiply Connected Domains
A Schwarz-Christoffel mapping formula is established for polygonal domains of finite connectivity m ≥ 2 thereby extending the results of Christoffel (1867) and Schwarz (1869) for m = 1 and Komatu (1945), m = 2. A formula for f, the conformal map of the exterior of m bounded disks to the exterior of m bounded, disjoint polygons, is derived. The derivation characterizes the global preSchwarzian f...
متن کاملStochastic Loewner evolution in multiply connected domains
We construct radial stochastic Loewner evolution in multiply connected domains, choosing the unit disk with concentric circular slits as a family of standard domains. The natural driving function or input is a diffusion on the associated moduli space. The diffusion stops when it reaches the boundary of the moduli space. We show that for this driving function the family of random growing compact...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Constructive Approximation
سال: 2014
ISSN: 0176-4276,1432-0940
DOI: 10.1007/s00365-014-9237-3